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Monitoring of phytoplankton 
size structure from space
Satellite remote sensing offers high-
resolution monitoring of phytoplankton 
size structure, which is a key index for 
the energy transfer efficiency through the 
marine food webs.

METHODS Statistical regression 
vs machine learning approaches
The present study constructed the CSD 
model (see right column) using optical 
characteristics of seawaters based on 
machine learning (ML) and conventional 
statistical regression (SR) approaches. 

RESULTS Validation statistics of 
developed CSD models

SR
Rrs(λ)

SR 
aph(λ)

ML 
Rrs(λ)

ML 
aph(λ)

R2 0.16 0.71 0.69 0.76
RMSE 0.42 0.28 0.26 0.23
MSE 0.17 0.08 0.07 0.05
MAE 0.31 0.22 0.21 0.17

CSD slope and optical characteristics
Spectral shapes of normalized remote 
sensing reflectance (Rrs) and phytoplankton 
absorption coefficient (aph) show clear 
relationship with CSD slope values.

Chla size distribution (CSD) model
Assuming CSD follows the Junge type power 
law, phytoplankton size structure is estimated 
as an exponent of CSD (CSD slope).

Study area 
Bathymetry map of the Pacific Arctic, with the 
locations of the in-situ stations (N = 177). 
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Implication Advantage of 
machine learning approach
ML approach demonstrated superior 
performance in model development 
compared to SR approach, suggesting 
the advantages of the capability of 
capturing trends and patterns between 
the optical signatures and CSD slope.
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Statistical Regression vs Machine Learning

Seasonal Climatology of CSD slope
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